Banner

Table of Equilibrium Constants for Aqueous Solutions of Ionic Compounds

Equilibrium constants, such as solubility product constants (Ksp), are essential for understanding ionic compounds' solubility behavior in aqueous systems. These constants provide critical insights into the concentration of dissociated ions at equilibrium, which is crucial for processes in fields such as analytical chemistry, materials science, and environmental engineering. Alfa Chemistry provides the equilibrium constants Ksp of some aqueous solutions of ionic compounds at 25 ℃ for reference.

Ionic CompoundsFormulaKspKspa
Aluminium hydroxideAl(OH)33*10-34
Aluminium phosphateAlPO49.84*10-21
Barium bromateBa(BrO3)22.43*10-4
Barium carbonateBaCO32.58*10-9
Barium chromate(VI)BaCrO41.17*10-10
Barium fluorideBaF21.84*10-7
Barium hydroxide octahydrateBa(OH)2 ·8H2O2.55*10-4
Barium iodateBa(IO3)24.01 *10-9
Barium iodate monohydrateBa(IO3)2·H2O1.67 *10-9
Barium molybdateBaMoO43.54*10-8
Barium nitrateBa(NO3)24.64*10-3
Barium selenateBaSeO43.40*10-8
Barium sulfateBaSO41.08*10-10
Barium sulfiteBaSO35.0*10-10
Beryllium hydroxideBe(OH)26.92*10-22
Bismuth arsenateBiAsO44.43*10-10
Bismuth iodideBiI7.71*10-19
Bismuth triioditeBiI37.71*10-19
Cadmium arsenateCd3(AsO4)22.2*10-33
Cadmium carbonateCdCO31.0*10-12
Cadmium fluorideCdF26.44 *10-3
Cadmium hydroxideCd(OH)27.2*10-15
Cadmium iodateCd(IO3)22.5*10-8
Cadmium oxalate trihydrateCdC2O4·3H2O1.42*10-8
Cadmium phosphateCd3(PO4)22.53*10-33
Cadmium sulfideCdS8*10-7
Calcium carbonate (aragonite)CaCO36.0*10-9
Calcium carbonate (calcite)CaCO33.36*10-9
Calcium fluorideCaF23.45*10-11
Calcium hydroxideCa(OH)25.02*10-6
Calcium iodateCa(IO3)26.47*10-6
Calcium iodate hexahydrateCa(IO3)2·6H2O7.10 *10-7
Calcium molybdateCaMoO41.46*10-8
Calcium oxalate monohydrateCaC2O4 ·H2O2.32*10-9
Calcium phosphateCa3 (PO4)22.07*10-33
Calcium sulfateCaSO44.93*10-5
Calcium sulfate dihydrateCaSO4 ·2H2O3.14 *10-5
Calcium sulfite hemihydrateCaSO3 ·0.5H2O3.1 *10-7
Cesium perchlorateCsClO43.95*10-3
Cesium periodateCsIO45.16 *10-6
Chromium(II)hydroxideCr(OH)21*10-17
Chromium(III)hydroxideCr(OH)31*10-30
Cobalt(II) arsenateCo3 (AsO4)26.80 *10-29
Cobalt(II) carbonateCoCO31.0 *10-10
Cobalt(II) hydroxideCo(OH)25.92*10-15
Cobalt(II) iodate dihydrateCo(IO3)2·2H2O1.21*10-2
Cobalt(II) phosphateCo3 (PO4)22.05*10-35
Copper(I) bromideCuBr6.27*10-9
Copper(I) chlorideCuCl1.72*10-7
Copper(I) cyanideCuCN3.47 *10-20
Copper(I) iodideCuI1.27*10-12
Copper(I) thiocyanateCuSCN1.77*10-13
Copper(II) arsenateCu3 (AsO4)27.95*10-36
Copper(II) hydroxideCu(OH)21*10-20
Copper(II) iodate monohydrateCu(IO3)2·H2O6.94 *10-8
Copper(II) oxalateCuC2O44.43*10-10
Copper(II) phosphateCu3(PO4)21.40*10-37
Copper(II) sulfideCuS6*10-16
Europium(III) hydroxideEu(OH)39.38 *10-27
Gallium(III) hydroxideGa(OH)37.38 *10-36
Iron(II) carbonateFeCO33.13 *10-11
Iron(II) fluorideFeF22.36*10-6
Iron(II) hydroxideFe(OH)24.87*10-17
Iron(II) sulfideFeS6*102
Iron(III) hydroxideFe(OH)32.79*10-39
Iron(III) phosphate dihydrateFePO4 ·2H2O9.91*10-16
Lanthanum iodateLa(IO3)37.50*10-12
Lead oxalatePbC2O48.5*10-9
Lead(II) bromidePbBr26.60*10-6
Lead(II) carbonatePbCO37.40*10-14
Lead(II) chloridePbCl21.70*10-5
Lead(II) chromatePbCrO43*10-13
Lead(II) fluoridePbF23.3*10-8
Lead(II) hydroxidePb(OH)21.43*10-20
Lead(II) iodatePb(IO3)23.69*10-13
Lead(II) iodidePbI29.8*10-9
Lead(II) selenatePbSeO41.37*10-7
Lead(II) sulfatePbSO42.53*10-8
Lead(II) sulfidePbS3*10-7
Lithium carbonateLi2CO38.15*10-4
Lithium fluorideLiF1.84*10-3
Lithium phosphateLi3PO42.37*10-11
Magnesium ammonium phosphateMgNH4PO43*10-13
Magnesium carbonateMgCO36.82*10-6
Magnesium carbonate pentahydrateMgCO3·5H2O3.79*10-6
Magnesium carbonate trihydrateMgCO3·3H2O2.38*10-6
Magnesium fluorideMgF25.16*10-11
Magnesium hydroxideMg(OH)25.61*10-12
Magnesium oxalate dihydrateMgC2O4 ·2H2O4.83*10-6
Magnesium phosphateMg3 (PO4)21.04*10-24
Manganese(II) carbonateMnCO32.24*10-11
Manganese(II) iodateMn(IO3)24.37*10-7
Manganese(II) oxalate dihydrateMnC2O4 ·2H2O1.70*10-7
Manganese(II) sulfide (a-form)MnS3*107
Mercury(I) bromideHg2Br26.40*10-23
Mercury(I) carbonateHg2CO33.6*10-17
Mercury(I) chlorideHg2Cl21.43*10-18
Mercury(I) fluorideHg2F23.10*10-6
Mercury(I) iodideHg2I25.2*10-29
Mercury(I) oxalateHg2C2O41.75*10-13
Mercury(I) sulfateHg2SO46.5*10-7
Mercury(I) thiocyanateHg2(SCN)23.2*10-20
Mercury(I)hydroxideHg2(OH)22*10-24
Mercury(II) bromideHgBr36.2*10-20
Mercury(II) hydroxideHg(OH)24*10-26
Mercury(II) iodide (red)HgI22.9*10-29
Mercury(II) sulfide (black)Hg2S2*10-32
Mercury(II) sulfide (red)Hg2S4*10-33
Neodymium carbonateNd2(CO3)31.08*10-33
Nickel(II) carbonateNiCO31.42*10-7
Nickel(II) hydroxideNi(OH)25.48*10-16
Nickel(II) iodateNi(IO3)24.71*10-5
Nickel(II) phosphateNi3(PO4)24.74*10-32
Palladium(II) thiocyanatePd(SCN)24.39*10-23
Potassium hexachloroplatinateK2PtCl67.48*10-6
Potassium perchlorateKClO41.05*10-2
Potassium periodateKIO43.71*10-4
Praseodymium(III) hydroxidePr(OH)33.39*10-24
Radium iodateRa(IO3)21.16*10-9
Radium sulfateRaSO43.66*10-11
Rubidium perchlorateRbClO43.00*10-3
Scandium fluorideScF35.81*10-24
Scandium hydroxideSc(OH)32.22*10-31
Silver(I) acetateAgC2H3O21.94*10-3
Silver(I) arsenateAg3AsO41.03*10-22
Silver(I) bromateAgBrO35.38*10-5
Silver(I) bromideAgBr5.35*10-13
Silver(I) carbonateAg2CO38.46*10-12
Silver(I) chlorideAgCl1.77*10-10
Silver(I) chromateAg2CrO41.12*10-12
Silver(I) cyanideAgCN5.97*10-17
Silver(I) hydroxideAgOH2*10-8
Silver(I) iodateAgIO33.17*10-8
Silver(I) iodideAgI8.52*10-17
Silver(I) oxalateAg2C2O45.40*10-12
Silver(I) phosphateAg3PO48.89*10-17
Silver(I) sulfateAg2SO41.20*10-5
Silver(I) sulfideAg2S6*10-30
Silver(I) sulfiteAg2SO31.50*10-14
Silver(I) thiocyanateAgSCN1.03*10-12
Strontium arsenateSr3(AsO4)4.29*10-19
Strontium carbonateSrCO35.60*10-10
Strontium fluorideSrF24.33*10-9
Zinc selenideZnSe3.6*10-26
Zinc selenite monohydrateZnSeO3 ·H2O1.59*10-7
Zinc sulfide (sphalerite)ZnS2*10-4
Zinc sulfide (wurtzite)ZnS3*10-2

Definition and Calculation of Ksp

For ionic compounds with limited solubility, the Ksp is defined based on the dissociation of the solid into its constituent ions in water. The general dissociation reaction is represented as:

MmAn(s) ⇌ mMn+(aq)+nAm-(aq)

The solubility product constant is given by:

Ksp ⇌ [Mn+]m+[Am-]n

Here:

MmAn is the sparingly soluble ionic compound.

Mn+ and Am- are the dissociated cation and anion, respectively.

[Mn+] and [Am-] are their equilibrium molar concentrations.

The calculation of Ksp from standard thermodynamic data involves the Gibbs free energy (ΔG°) of formation for the ionic species and the solid compound. The relationship is expressed as:

ΔG°=mΔfG°(Mn+, aq)+nΔfG°(Am-, aq)-ΔfG°(MmAn, s)

Where:

ΔfG° is the standard Gibbs free energy of formation.

R is the universal gas constant.

T is the absolute temperature (in Kelvin).

This thermodynamic approach ensures precise and reproducible Ksp values for various ionic substances.

Ksp vs. Kspa

Solubility Product Constant (Ksp)

Ksp is a thermodynamic constant that describes the product of ionic concentrations of insoluble salts in saturated solution. It is constant at a given temperature, independent of whether or not equilibrium is reached in the solution.Ksp denotes the dynamic equilibrium of a poorly soluble salt as it dissolves, e.g., for AB↔A++B-, the expression for Ksp is:

Ksp=[A+][B-]

The value of Ksp is independent of the effects of temperature and other components of the solution, and reflects the limit of a solid's ability to dissolve.

Apparent Solubility Product Constant (Kspa)

Kspa is the solubility product constant for the actual system of a solution, which is affected by other factors (e.g., co-existing ions, complexation, pH, ionic strength, etc.) The expression for Kspa is similar to that for Ksp, but the value reflects the true state of solubility equilibrium for a given system, rather than a purely thermodynamic limit. For example, if the presence of a complexing agent in the system increases the solubility of the metal ion, the value of Kspa will be significantly greater than the theoretical Ksp.

Summary of Differences

Characteristics Ksp Kspa
DefinitionSolubility product under ideal conditionsSolubility product taking into account the effect of actual conditions
Dependent factorsInherent properties (temperature dependent only)Environmental conditions (e.g. pH, ionic strength)
Reflects the systemThermodynamic equilibrium state at the limit of theoryDissolution equilibria under practical conditions
Practical applicationsUsed to predict the solubility of salts under standard conditions and to perform chemical equilibrium calculations.Used for the analysis of the dissolution behavior of complex systems in real environments, such as the study of the migration behavior of heavy metals in wastewater treatment.
Online Inquiry

Please contact us if you have questions about our company, our products, or general enquiries. Please use the form below.

Verification code
Alfa Chemistry

For product inquiries, please use our online system or send an email to .

Alfa Chemistry
Shopping basket
qrcodex
Download
Verification code
* I hereby give my consent that I may receive marketing e-mails with information on existing and new services from this company. I know that I can opt-out from receiving such e-mails at any time or by using the link which will be provided in each marketing e-mail.