Banner
  • Home
  • Resources
  • Publications
  • Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment

Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment

Liu K, Ohodnicki P R, Kong X, et al

Nanotechnology, 2019, 30(40): 405704

Au nanorods (Au NRs) are promising candidates for sensing applications due to their tunable localized surface plasmon resonance wavelength. At temperatures above 250 °C, however, these structures are morphologically unstable and tend to evaporate. We herein report a novel refractory plasmonic nanocomposite system comprising Au NRs entrapped in anodized aluminum oxide (AAO) scaffolds that are stable up to 800 °C. Au NRs were synthesized in the cylindrical pores of sapphire-supported AAO via in situ electroless deposition on catalytic Au nanoparticles (Au NPs) anchored on the pore walls. The morphological characteristics and surface-enhanced Raman scattering (SERS) functionality of Au NRs before and after heat treatment were evaluated using SEM, XRD and Raman spectroscopy. Compared to unconfined Au NRs that evolved into spherical particles at temperatures below 250 °C and subsequently evaporated from the substrate surface, the morphology of Au NRs in AAO was preserved upon heat treatment at temperatures up to 800 °C. Furthermore, by tuning the AAO scaffolds thickness and pore diameter, the aspect ratio (AR) of the entrapped Au NRs was varied from 2.4 to 7.8. The SERS sensitivity of Au NRs in AAO was found to increase with decreasing AR when the incident light was parallel to the rod longitudinal axis, in close agreement with the calculated fourth power of the local electromagnetic field using the finite-difference time domain method.

Chemicals Related in the Paper:

Catalog Number Product Name Structure CAS Number Price
ACM19153981 Gold sodium sulphite Gold sodium sulphite 19153-98-1 Price
Alfa Chemistry

For product inquiries, please use our online system or send an email to .

Alfa Chemistry
Inquiry Basket
qrcodex
Download
Verification code
* I hereby give my consent that I may receive marketing e-mails with information on existing and new services from this company. I know that I can opt-out from receiving such e-mails at any time or by using the link which will be provided in each marketing e-mail.